Utilizing a suite of satellite missions to address poorly constrained hydrological fluxes

Alka Singh¹; Ali Behrangi¹; John T. Reager¹; Joshua B. Fisher¹; Alex Gardner¹

¹Jet Propulsion Laboratory, California Institute of Technology.

Introduction

- Lakes often significantly contribute to the regional climatology
- The present work assesses current remote sensing potentials and determine the challenging areas for further improvement
- The study mainly consists of using remote sensing data to quantify following changes
 - · Lake level and volume,
 - The rate of evaporation loss
 - Estimating river streamflow to the lake
 - Assessing the spatiotemporal hydrological variations in the river basin

Study area

Historical water height

Water levels estimated by altimetry, Landsat and GRACE

South Aral Sea water volume

South Aral Sea evaporation

Streamflow into the South Aral Sea

Amu Darya basin

Conclusion

- Landsat images together with bathymetry can provide an alternative water level estimate.
 GRACE signals from the lakes like the Aral Sea have a potential to fill the water level data gap.
- Integrating altimetry-based lake volume variations with the in-situ runoff and precipitation can back-calculate evaporation from the lake.
- MODIS based JPL-ET found to have the closest approximation with the back-calculated evaporation.
- The GRACE signal from the basin can provide a long-term trend of the streamflow into the lake.
- It may predict the flood events one or two months in advance.
- Increase in total water storage (TWS) in the central Amu Darya basin indicates a rise in infiltration, probably due to worsening of the canal structure in the region.